Wednesday, February 19, 2020

Implementation of Prim's algorithm for MST


using namespace std;
# define INF 0x3f3f3f3f
  
// iPair ==>  Integer Pair
typedef pair<int, int> iPair;
  
// This class represents a directed graph using
// adjacency list representation
class Graph
{
    int V;    // No. of vertices
  
    // In a weighted graph, we need to store vertex
    // and weight pair for every edge
    list< pair<int, int> > *adj;
  
public:
    Graph(int V);  // Constructor
  
    // function to add an edge to graph
    void addEdge(int u, int v, int w);
  
    // Print MST using Prim's algorithm
    void primMST();
};
  
// Allocates memory for adjacency list
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<iPair> [V];
}
  
void Graph::addEdge(int u, int v, int w)
{
    adj[u].push_back(make_pair(v, w));
    adj[v].push_back(make_pair(u, w));
}
  
// Prints shortest paths from src to all other vertices
void Graph::primMST()
{
    // Create a priority queue to store vertices that
    // are being preinMST. This is weird syntax in C++.
    // Refer below link for details of this syntax
    priority_queue< iPair, vector <iPair> , greater<iPair> > pq;
  
    int src = 0; // Taking vertex 0 as source
  
    // Create a vector for keys and initialize all
    // keys as infinite (INF)
    vector<int> key(V, INF);
  
    // To store parent array which in turn store MST
    vector<int> parent(V, -1);
  
    // To keep track of vertices included in MST
    vector<bool> inMST(V, false);
  
    // Insert source itself in priority queue and initialize
    // its key as 0.
    pq.push(make_pair(0, src));
    key[src] = 0;
  
    /* Looping till priority queue becomes empty */
    while (!pq.empty())
    {
        // The first vertex in pair is the minimum key
        // vertex, extract it from priority queue.
        // vertex label is stored in second of pair (it
        // has to be done this way to keep the vertices
        // sorted key (key must be first item
        // in pair)
        int u = pq.top().second;
        pq.pop();
  
        inMST[u] = true// Include vertex in MST
  
        // 'i' is used to get all adjacent vertices of a vertex
        list< pair<int, int> >::iterator i;
        for (i = adj[u].begin(); i != adj[u].end(); ++i)
        {
            // Get vertex label and weight of current adjacent
            // of u.
            int v = (*i).first;
            int weight = (*i).second;
  
            //  If v is not in MST and weight of (u,v) is smaller
            // than current key of v
            if (inMST[v] == false && key[v] > weight)
            {
                // Updating key of v
                key[v] = weight;
                pq.push(make_pair(key[v], v));
                parent[v] = u;
            }
        }
    }
  
    // Print edges of MST using parent array
    for (int i = 1; i < V; ++i)
        printf("%d - %d\n", parent[i], i);
}
  
// Driver program to test methods of graph class
int main()
{
    // create the graph given in above fugure
    int V = 9;
    Graph g(V);
  
    //  making above shown graph
    g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);
  
    g.primMST();
  
    return 0;
}